Meny

Javascript is not activated in your browser. This website needs javascript activated to work properly.
Du är här

Invariance properties of the negative binomial Levy process and stochastic self-similarity.

Författare:
Publiceringsår: 2007
Språk: Engelska
Sidor: 1457-1468
Publikation/Tidskrift/Serie: INTERNATIONAL MATHEMATICAL FORUM
Volym: 2
Nummer: 30
Dokumenttyp: Artikel
Förlag: Hikari Ltd.

Sammanfattning

We study the concept of self-similarity with respect to stochastic
time change. The negative binomial process (NBP) is an example of a
family of random time transformations with respect to which stochastic
self-similarity holds for certain stochastic processes. These processes
include gamma process, geometric stable processes, Laplace motion, and
fractional Laplace motion. We derive invariance properties of the NBP
with respect to random time deformations in connection with stochastic
self-similarity. In particular, we obtain more general classes of processes
that exhibit stochastic self-similarity properties. As an application, our
results lead to approximations of the gamma process via the NBP and
simulation algorithms for both processes.

Disputation

Nyckelord

  • Mathematics and Statistics
  • Compound Poisson process
  • Cox process
  • Discrete L´evy process
  • Doubly stochastic Poisson process
  • Fractional Laplace motion
  • Gamma- Poisson process
  • Gamma process
  • Geometric sum
  • Geometric distribution
  • Infinite divisibility
  • Point process
  • Random stability
  • Subordination
  • Self similarity
  • Simulation

Övriga

Published
Yes
  • ISSN: 1312-7594

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen