Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

On-line monitoring of airborne chemistry in levitated nanodroplets: In situ synthesis and application of SERS-active Ag-sols for trace analysis by FT-Raman spectroscopy

Författare

Summary, in English

We report a new strategy for on-fine monitoring of chemical reactions in ultrasonically levitated, nanoliter-sized droplets by Raman spectroscopy. A flow-through microdispenser connected to an automated flow injection system was used to dose picoliter droplets into the node of an ultrasonic trap. Taking advantage of the flow-through characteristics of the microdispenser and the versatility of the automated flow system, a well-defined sequence of reagents could be injected via the microdispenser into the levitated droplet placed in the focus of the collection optics of the Fourier transform Raman spectrometer. In that way, chemical reactions could be carried out and monitored on-line. The developed system was used for fast, reproducible, in situ synthesis of a highly active surface enhanced Raman scattering (SERS) sol resulting from the reduction of silver nitrate with hydroxylamine hydrochloride in basic conditions. With this chemical system, SERS substrate preparation could be achieved at room temperature and in short time. The in situ prepared silver sol was used for trace analysis of several organic test molecules that were injected into the levitated SERS-active droplet again using the microdispenser. The concentration dependence of the SERS spectra was studied using 9-aminoacridine, revealing that down to the femtogram region high-quality SERS spectra could be obtained. Additionally, SERS spectra of 6-mercaptopurine, thiamine, and acridine were recorded in the levitated drop as well.

Publiceringsår

2003

Språk

Engelska

Sidor

2166-2171

Publikation/Tidskrift/Serie

Analytical Chemistry

Volym

75

Issue

9

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Analytical Chemistry

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1520-6882