Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Cooperative Power-Aware Scheduling in Grid Computing Environments

Författare

Summary, in English

Energy usage and its associated costs have taken on a new level of significance in recent years. Globally, energy costs that include the cooling of server rooms are now comparable to hardware costs, and these costs are on the increase with the rising cost of energy. As a result, there are efforts worldwide to design more efficient scheduling algorithms. Such scheduling algorithm for grids is further complicated by the fact that the different sites in a grid system are likely to have different ownerships. As such, it is not enough to simply minimize the total energy usage in the grid; instead one needs to simultaneously minimize energy usage between all the different providers in the grid. Apart from the multitude of ownerships of the different sites, a grid differs from traditional high performance computing systems in the heterogeneity of the computing nodes as well as the communication links that connect the different nodes together. In this paper, we propose a cooperative, power-aware game theoretic solution to the job scheduling problem in grids. We discuss our cooperative game model and present the structure of the Nash Bargaining Solution. Our proposed scheduling scheme maintains a specified Quality of Service (QoS) level and minimizes energy usage between all the providers simultaneously; energy usage is kept at a level that is sufficient to maintain the desired QoS level. Further, the proposed algorithm is fair to all users, and has robust performance against inaccuracies in performance prediction information.

Publiceringsår

2010

Språk

Engelska

Sidor

84-91

Publikation/Tidskrift/Serie

Journal of Parallel and Distributed Computing

Volym

70

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0743-7315