Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Detection and identification of anomalies in wireless mesh networks using Principal Component Analysis (PCA)

Författare:
Publiceringsår: 2008
Språk: Engelska
Sidor:
Dokumenttyp: Konferensbidrag
Förlag: IEEE
Ytterligare information: Invited paper.

Sammanfattning

Anomaly detection is becoming a powerful and necessary component as wireless networks gain popularity. In this paper, we evaluate the efficacy of PCA based anomaly detection for wireless mesh networks. PCA was originally developed for wired networks. Our experiments show that it is possible to detect different types of anomalies in an interference prone wireless environment. However, the sensitivity of PCA to small changes in flows prompted us to develop an anomaly identification scheme which automatically identifies the flow(s) causing the detected anomaly and their contributions in terms of number of packets. Our results show that the identification scheme is able to differentiate false alarms from real anomalies and pinpoint the culprit(s) in case of a real fault or threat. The experiments were performed over an 8 node mesh testbed deployed in an urban street layout in Sydney, under different realistic traffic scenarios. Our identification scheme facilitates the use of PCA based method for real-time anomaly detection in wireless networks as it can filter the false alarms locally at the monitoring nodes without excessive computational overhead.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

International Symposium on Parallel Architectures, Algorithms, and Networks, I-SPAN 2008
2008-05-07/2008-05-09
Sydney, Australia
Published
Yes
  • ISSN: 1087-4089
  • ISBN: 978-0-7695-3125-0

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen