Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation.

Författare

Summary, in English

The receptor tyrosine kinase c-Kit, also known as the stem cell factor receptor, plays a key role in several developmental processes. Activating mutations in c-Kit lead to alteration of these cellular processes and have been implicated in many human cancers such as gastrointestinal stromal tumors (GISTs), acute myeloid leukemia (AML), testicular seminomas and mastocytosis. Regulation of the catalytic activity of several kinases is known to be governed by phosphorylation of tyrosine residues in the activation loop of the kinase domain. However, in the case of c-Kit phosphorylation of Y823 has been demonstrated to be a late event that is not required for kinase activation. However, since phosphorylation of Y823 is a ligand-activated event, we sought to investigate the functional consequences of Y823 phosphorylation. By using a tyrosine to phenylalanine mutant of tyrosine 823 we investigated the impact of Y823 on c-Kit signaling. We here demonstrate that Y823 is crucial for cell survival and proliferation and mutation of Y823 to phenylalanine leads to decreased sustained phosphorylation and ubiquitination of c-Kit as compared to the wild-type receptor. Furthermore, the mutated receptor was upon ligand-stimulation quickly internalized and degraded. Phosphorylation of the E3 ubiquitin ligase, Cbl was transient followed by a substantial reduction in phosphorylation of downstream signaling molecules such as Akt, Erk, Shc and Gab2. Thus, we propose that activation loop tyrosine 823 is crucial for activation of both the MAPK and PI3K pathways and that its disruption leads to a destabilization of the c-Kit receptor and decreased survival of cells.

Avdelning/ar

Publiceringsår

2013

Språk

Engelska

Sidor

22460-22468

Publikation/Tidskrift/Serie

Journal of Biological Chemistry

Volym

288

Issue

31

Dokumenttyp

Artikel i tidskrift

Förlag

American Society for Biochemistry and Molecular Biology

Ämne

  • Medicinal Chemistry

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1083-351X