Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Direct Camera Pose Tracking and Mapping With Signed Distance Functions

Författare

  • Erik Bylow
  • Jürgen Sturm
  • Christian Kerl
  • Fredrik Kahl
  • Daniel Cremers

Summary, in English

In many areas, the ability to create accurate 3D models is of great interest, for example, in computer vision, robotics, architecture, and augmented reality. In this paper we show how a textured indoor environment can be reconstructed

in 3D using an RGB-D camera. Real-time performance can be achieved using a GPU. We show how the camera pose can be estimated directly using the geometry that we represent as a signed distance function (SDF). Since the SDF contains information

about the distance to the surface, it defines an error-metric which is minimized to estimate the pose of the camera. By iteratively estimating the camera pose and integrating the new depth images into the model, the 3D reconstruction is computed on the fly. We present several examples of 3D reconstructions made from

a handheld and robot-mounted depth sensor, including detailed reconstructions from medium-sized rooms with almost drift-free pose estimation. Furthermore, we demonstrate that our algorithm is robust enough for 3D reconstruction using data recorded from a quadrocopter, making it potentially useful for navigation

applications.

Ämne

  • Mathematics

Conference name

RGB-D Workshop on Advanced Reasoning with Depth Cameras (RGB-D 2013)

Conference date

2013-06-27

Conference place

Berlin, Germany

Status

Published