Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Experimental Investigations of Lean Stability Limits of a Prototype Syngas Burner for Low Calorific Value Gases

Författare

Redaktör

  • Ponnuthurai Gokulakrishnan

Summary, in English

The lean stability limit of a prototype syngas burner is

investigated. The burner is a three sector system, consisting

of a separate igniter, stabilizer and Main burner. The

ignition sector, Rich-Pilot-Lean (RPL), can be operated with

both rich or lean equivalence values, and serves to ignite the

Pilot sector which stabilizes the Main combustion sector.

The RPL and Main sectors are fully premixed, while the

Pilot sector is partially premixed. The complexity of this

burner design, especially the ability to vary equivalence

ratios in all three sectors, allows for the burner to be

adapted to various gases and achieve optimal combustion.

The gases examined are methane and a high H2 model

syngas (10% CH4, 22.5% CO, 67.5% H2). Both gases are

combusted at their original compositions and the syngas

was also diluted with N2 to a low calorific value fuel with a

Wobbe index of 15 MJ/m3. The syngas is a typical product of

gasification of biomass or coal. Gasification of biomass can

be considered to be CO2 neutral. The lean stability limit is

localized by lowering the equivalence ratio from stable

combustion until the limit is reached. To get a comparable

blowout definition the CO emissions is measured using a

non-dispersive infrared sensor analyzer. The stability limit is

defined when the measured CO emissions exceed 200 ppm. The stability limit is measured for the 3 gas mixtures at

atmospheric pressure. The RPL equivalence ratio is varied

to investigate how this affected the lean blowout limit. A

small decrease in stability limit can be observed when

increasing the RPL equivalence ratio. The experimental

values are compared with values from a perfectly stirred

reactor modeled (PSR), under burner conditions, using the

GRI 3.0 kinetic mechanism for methane and the San Diego

mechanism for the syngas fuels.

Publiceringsår

2011

Språk

Engelska

Publikation/Tidskrift/Serie

ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition

Volym

2

Dokumenttyp

Konferensbidrag

Förlag

American Society Of Mechanical Engineers (ASME)

Ämne

  • Energy Engineering

Nyckelord

  • Lean blowout
  • combustion
  • burner
  • syngas
  • hydrogen

Conference name

ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition

Conference date

2011-06-06 - 2011-06-10

Conference place

Vancouver, Canada

Status

Published

ISBN/ISSN/Övrigt

  • ISBN: 978-0-7918-5462-4
  • GT2011-45694