Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Soft-output BEAST decoding with application to product Codes

Publiceringsår: 2008
Språk: Engelska
Sidor: 1036-1049
Publikation/Tidskrift/Serie: IEEE Transactions on Information Theory
Volym: 54
Nummer: 3
Dokumenttyp: Artikel i tidskrift
Förlag: IEEE--Institute of Electrical and Electronics Engineers Inc.


A Bidirectional Efficient Algorithm for Searching code Trees (BEAST) is proposed for efficient soft-output decoding of block codes and concatenated block codes. BEAST operates on trees corresponding to the minimal trellis of a block code and finds a list of the most probable codewords. The complexity of the BEAST search is significantly lower than the complexity of trellis-based algorithms, such as the Viterbi algorithm and its list-generalizations. The outputs of BEAST, a list of best codewords and their metrics, are used to obtain approximate a posteriori reliabilities of the transmitted symbols, yielding a soft-input soft-output (SISO) symbol decoder referred to as the BEAST-APP decoder. This decoder is employed as a component decoder in iterative schemes for decoding of product and incomplete product codes. Its performance and convergence behavior are investigated using EXIT charts and compared to existing

decoding schemes. It is shown that the BEAST-APP decoder achieves performances close to the BCJR decoder with a substantially lower computational complexity.


  • Electrical Engineering, Electronic Engineering, Information Engineering
  • block turbo codes
  • list decoding
  • product codes
  • soft-input soft-output (SISO) decoding


  • Information Theory-lup-obsolete
  • ISSN: 0018-9448

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at]

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen