Du är här

Hydrogeochemical properties of a salinity-affected coastal aquifer in western Japan

Författare:
Publiceringsår: 2006
Språk: Engelska
Sidor: 1425-1435
Publikation/Tidskrift/Serie: Hydrological Processes
Volym: 20
Nummer: 6
Dokumenttyp: Artikel
Förlag: John Wiley & Sons, Ltd

Sammanfattning

Coastal groundwater aquifers are often exposed to heavy pumping and consequently to risks of saltwater intrusion. In many cases, however, the observed increase in groundwater salinity can only be partly explained by actual saltwater intrusion from the sea. Other salinity-increasing processes may also significantly contribute to the total salt content of the groundwater. This paper describes a geochemical investigation that was carried out to investigate recent salinity increases in groundwater for the Motooka coastal area in Fukuoka, Japan. A strong increase in electrical conductivity at 15-20 m depth was observed, corresponding to the freshwater and saltwater interface. Oxidation-reduction potentials observed in deeper groundwater were low, indicating long residence time for the groundwater. These results, together with hydrogen-oxygen isotope ratio analysis, indicated that the deeper groundwater is affected by seawater. Consequently, observed tritium concentration in the shallow groundwater system was higher than that of the deeper groundwater system, and a C-14 isotope dating of shell samples collected at 2 m depth indicated an age of about 2000 years. The overall results suggest that the aquifer was originally below the current sea floor and that deeper saline groundwater is not mixed with the shallower fresh groundwater. The deeper groundwater is, therefore, mainly affected by old seawater. In other words, modern saltwater intrusion has not yet occurred even if some wells contain saline water. The study shows that, even though coastal aquifers are heavily pumped, the reason for the rise in groundwater salinity may not necessarily be due to seawater intrusion. Further geochemical and hydrological investigations will be necessary to identify the underlying mechanisms. Copyright (c) 2006 John Wiley & Sons, Ltd.

Disputation

Nyckelord

  • Technology and Engineering
  • environmental isotope
  • analysis
  • electrical conductivity
  • redox conditions
  • salinity-affected coastal groundwater aquifer
  • groundwater quality

Övriga

Published
Yes
  • ISSN: 0885-6087

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

 

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen