Meny

Du är här

Background segmentation beyond RGB

Redaktör:
  • Narayanan S
Publiceringsår: 2006
Språk: Engelska
Sidor: 602-612
Publikation/Tidskrift/Serie: Computer Vision – ACCV 2006 / Lecture Notes in Computer Science
Volym: 3852
Dokumenttyp: Konferensbidrag
Förlag: Springer

Sammanfattning

To efficiently classify and track video objects in a surveillance application, it is essential to reduce the amount of streaming data. One solution is to segment the video into background, i.e. stationary objects, and foreground, i.e. moving objects, and then discard the background. One such motion segmentation algorithm that has proven reliable is the Stauffer and Crimson algorithm. This paper investigates how different color spaces affect the segmentation result in terms of noise and shadow sensitivity. Shadows are especially problematic since they not only distort shape but can also result in falsely connected objects that will complicate tracking and classification. Therefore, a new decision kernel for the segmentation algorithm is presented. This kernel alters the probability of foreground detection to reduce shadows and to increase the chance of correct segmentation for objects with a skin tone color, e.g. faces.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

7th Asian Conference on Computer Vision (ACCV’06),
2006-01-13
Hyderabad, India
Published
Yes
  • Elektronikkonstruktion
  • ISSN: 0302-9743
  • ISBN: 978-3-540-31244-4

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen