Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Simulation of Surface Reactions and Multiscale Transport Processes in a Composite Anode Domain Relevant for Solid Oxide Fuel Cells

Författare

Summary, in English

There are various transport phenomena (gas-phase species, heat, and momentum) occurring at different length scales in anode-supported solid oxide fuel cells (SOFCs), which are strongly affected by catalytic surface reactions at active triple-phase boundaries (TPBs) between the void space (for gas), Ni (catalysts for electrons), and YSZ (an electrolyte material for ions). To understand the multiscale chemical-reacting transport processes in the cell, a three-dimensional numerical calculation approach (the computational fluid dynamics (CFD) method) is further developed and applied for a composite domain including a porous anode, fuel gas flow channel, and solid interconnect. By calculating the rate of microscopic surface-reactions involving the surface-phase species, the gas-phase species/heat generation and consumption related to the internal reforming reactions have been identified and implemented. The applied microscopic model for the internal reforming reactions describes the adsorption and desorption reactions of six gas-phase species and surface reactions of 12 surface-adsorbed species. The predicted results are presented and analyzed in terms of the gas-phase species and temperature distributions and compared with those predicted by employing the global reaction scheme for the internal reforming reactions.

Avdelning/ar

Publiceringsår

2013

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Fuel Cell Science and Technology

Volym

10

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

American Society Of Mechanical Engineers (ASME)

Ämne

  • Energy Engineering

Nyckelord

  • catalytic surface reaction
  • internal reforming
  • transport processes
  • multiscale
  • solid oxide fuel cell (SOFC)

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1551-6989