Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Vehicle-to-Vehicle Propagation Models With Large Vehicle Obstructions

Författare

Summary, in English

Vehicle-to-vehicle (V2V) communication is an enabler for improved traffic safety and congestion control. As for any wireless system, the ultimate performance limit is determined by the propagation channel. A particular point of interest is the shadowing effect of large vehicles such as trucks and buses, as this might affect the communication range significantly. In this paper we present measurement results and model the propagation channel, in which a bus acts either as a shadowing object or as a relay between two passenger cars. The measurement setup is based on a Wireless Open-Access Research Platform (WARP) Field-Programmable Gate Array (FPGA) software radio as transmitter and a Tektronix RSA5106A real-time complex spectrum analyzer as receiver. We analyze the influence of the bus location and car separation distance on the path loss, shadowing, small-scale fading, delay spread, and cross correlation. The main effect of the bus is that it is acting as an obstruction creating an additional 15- to 20-dB attenuation and an increase in the root-mean-square delay spread by roughly 100 ns. A Nakagami distribution is found to well describe the statistics of the small-scale fading, by using Akaike's Information Criterion and the Kolmogorov-Smirnov test. The distance dependence of the path loss is analyzed and a stochastic model is developed.

Publiceringsår

2014

Språk

Engelska

Sidor

2237-2248

Publikation/Tidskrift/Serie

IEEE Transactions on Intelligent Transportation Systems

Volym

15

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering

Nyckelord

  • Delay spread
  • large vehicle obstructions
  • path loss
  • shadow fading
  • small-scale fading
  • vehicle-to-vehicle (V2V) communications

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1524-9050