Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Modelling and simulation of Internal Traverse Grinding: bridging meso- and macro-scale simulations

Författare

  • Raphael Holtermann
  • Andreas Menzel
  • Sebastian Schumann
  • Dirk Biermann
  • Tobias Siebrecht
  • Petra Kersting

Summary, in English

In this work, we focus on the computational bridging between the meso- and macro-scale in the context of the hybrid modelling of Internal Traverse Grinding with electro-plated cBN wheels. This grinding process satisfies the manufacturing industry demands for a high rate of material removal along with a high surface quality while minimising the number of manufacturing processes invoked. To overcome the major problem of the present machining process, namely a highly concentrated thermal load which can result in micro-structural damage and dimension errors of the workpiece, a hybrid simulation framework is currently under development. The latter consists of three components. First, a kinematic simulation that models the grinding wheel surface based on experimentally determined measurements is used to calculate the transient penetration history of every grain intersecting with the workpiece. Secondly, an h-adaptive, plane-strain finite element model incorporating elasto-plastic work hardening, thermal softening and ductile damage is used to simulate the proximity of one cBN grain during grinding and to capture the complex thermo-mechanical material response on a meso-scale. For the third component of the framework, the results from the preceding two simulation steps are combined into a macro-scale process model that shall in the future be used to improve manufacturing accuracy and to develop error compensation strategies accordingly. To achieve this objective, a regression analysis scheme is incorporated to approximate the influence of the several cutting mechanisms on the meso-scale and to transfer the homogenisation-based thermo-mechanical results to the macro-scale.

Avdelning/ar

Publiceringsår

2015

Språk

Engelska

Sidor

451-463

Publikation/Tidskrift/Serie

Production Engineering

Volym

9

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Mechanical Engineering

Nyckelord

  • h-Adaptive remeshing
  • cBN
  • Grinding
  • 100Cr6(AISI 52100)
  • Finite element method

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0944-6524