Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

Författare

  • R. J. Gray
  • D. C. Carroll
  • X. H. Yuan
  • C. M. Brenner
  • Matthias Burza
  • M. Coury
  • K. L. Lancaster
  • X. X. Lin
  • Y. T. Li
  • D. Neely
  • M. N. Quinn
  • O. Tresca
  • Claes-Göran Wahlström
  • P. McKenna

Summary, in English

Laser energy absorption to fast electrons during the interaction of an ultra-intense (10(20) Wcm(-2)), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient.

Avdelning/ar

Publiceringsår

2014

Språk

Engelska

Publikation/Tidskrift/Serie

New Journal of Physics

Volym

16

Dokumenttyp

Artikel i tidskrift

Förlag

IOP Publishing

Ämne

  • Atom and Molecular Physics and Optics

Nyckelord

  • laser-plasma interaction
  • laser pulse propagation
  • fast electron
  • generation

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1367-2630