Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

TRPV1 and TRPA1 stimulation induces MUC5B secretion in the human nasal airway in vivo.

Författare

Summary, in English

Aim: Nasal transient receptor potential vanilloid 1 (TRPV1) stimulation with capsaicin produces serous and mucinous secretion in the human nasal airway. The primary aim of this study was to examine topical effects of various TRP ion channel agonists on symptoms and secretion of specific mucins: mucin 5 subtype AC (MUC5AC) and B (MUC5B). Methods: Healthy individuals were subjected to nasal challenges with TRPV1 agonists (capsaicin, olvanil and anandamide), TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and mustard oil) and a TRP melastatin 8 (TRPM8) agonist (menthol). Symptoms were monitored, and nasal lavages were analysed for MUC5AC and MUC5B, i.e. specific mucins associated with airway diseases. In separate groups of healthy subjects, nasal biopsies and brush samples were analysed for TRPV1 and MUC5B, using immunohistochemistry and RT-qPCR. Finally, calcium responses and ciliary beat frequency were measured on isolated ciliated epithelial cells. Results: All TRP agonists induced nasal pain or smart. Capsaicin, olvanil and mustard oil also produced rhinorrhea. Lavage fluids obtained after challenge with capsaicin and mustard oil indicated increased levels of MUC5B, whereas MUC5AC was unaffected. MUC5B and TRPV1 immunoreactivities were primarily localized to submucosal glands and peptidergic nerve fibres, respectively. Although trpv1 transcripts were detected in nasal brush samples, functional responses to capsaicin could not be induced in isolated ciliated epithelial cells. Conclusion: Agonists of TRPV1 and TRPA1 induced MUC5B release in the human nasal airways in vivo. These findings may be of relevance with regard to the regulation of mucin production under physiological and pathophysiological conditions.

Publiceringsår

2011

Språk

Engelska

Sidor

435-444

Publikation/Tidskrift/Serie

Clinical Physiology and Functional Imaging

Volym

31

Issue

6

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Physiology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1475-0961