Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Topics in Trajectory Generation for Robots

Författare

  • Mahdi Ghazaei

Summary, in English

A fundamental problem in robotics is generating the motion for a task. How to translate a task to motion or a series of movements is a non-trivial problem. The complexity of the task, the structure of the robot, and the desired performance determine the sequence of movements, the path, and the course of motion as a function of time, namely the trajectory. As we discuss in this thesis, a trajectory can be acquired from a human demonstration or generated by carefully designing an objective function. In the first approach, we examine a number of robotic setups which are suitable for human demonstration. More notably, admittance control as a new dimension to the robot-assisted teleoperation is investigated. We also describe a free-floating behavior which makes robust lead-through programming possible. As a way to utilize these setups, we present some ideas for developing a high-level language for an event-based programming common to assembly tasks.



Since immediate reaction to variations in the target state and/or robot state is desirable, we reformulate the trajectory generation problem as a controller design problem. Using the Hamilton-Jacobi-Bellman equation, we derive a closed-loop solution to the fixed-time trajectory-generation problem with a minimum-jerk cost functional. We show that the resulting trajectory coincides with a fifth-order polynomial function of time that instantaneously updates due to changes in the reference signal and/or the robot states.



A short comparison is made between kinematic and dynamic models for generating optimal trajectories. The conclusion is that given conservative kinematic constraints, both models behave in a similar way. Having this in mind, we derive an analytic solution to the problem of fixed-time trajectory generation with a quadratic cost function under velocity and acceleration constraints. The advantage of the analytic solution compared to an on-line optimization approach lies in the efficiency of the computation.



To extend the idea of closed-loop trajectory generation, we adapt the Model Predictive Control (MPC) framework. MPC is traditionally applied to tracking problems, i.e., when there is an explicit reference signal. Thus, it is a common practice to have a separate layer that generates the reference signal. We propose an integrated approach by introducing a final state constraint in the formulation. Additionally, we give the interpretation that the difference between tracking and point-to-point trajectory-planning problems is in the density of the specified desired reference signal. We utilize a strategy to reduce the discretization time successively. This way, we respect the real-time constraints for computation time while the accuracy of the solution is gradually improved as the deadline approaches. We have verified our proposed MPC approach to trajectory generation in a ball-catching experiment.

Publiceringsår

2015

Språk

Engelska

Publikation/Tidskrift/Serie

Research Reports TFRT-3265

Dokumenttyp

Licentiatavhandling

Förlag

Department of Automatic Control, Lund Institute of Technology, Lund University

Ämne

  • Control Engineering

Status

Published

Projekt

  • PRACE
  • LCCC

Forskningsgrupp

  • LCCC

ISBN/ISSN/Övrigt

  • ISSN: 0280-5316