Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction

Författare

  • Marjukka Tuominen
  • Muhammad Yasir
  • Jouko Lang
  • Johnny Dahl
  • Mikhail Kuzmin
  • Jaakko Makela
  • Marko Punkkinen
  • Pekka Laukkanen
  • Kalevi Kokko
  • Karina Schulte
  • Risto Punkkinen
  • Ville-Markus Korpijarvi
  • Ville Polojarvi
  • Mircea Guina

Summary, in English

Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 x 2) surface reconstruction, leading to a crystalline c(4 x 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 x 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 x 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 x 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 x 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

Publiceringsår

2015

Språk

Engelska

Sidor

7060-7066

Publikation/Tidskrift/Serie

Physical Chemistry Chemical Physics

Volym

17

Issue

10

Dokumenttyp

Artikel i tidskrift

Förlag

Royal Society of Chemistry

Ämne

  • Physical Sciences
  • Natural Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1463-9084