Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Scattering of transient electromagnetic waves in reciprocal bi-isotropic media

Författare:
Publiceringsår: 1991
Språk: Engelska
Sidor: 17
Publikation/Tidskrift/Serie: Technical Report LUTEDX/(TEAT-7015)/1-17/(1991)
Dokumenttyp: Rapport
Ytterligare information: Published version: J.Electro. Waves Applic., 6(11), 1517-1535, 1992.

Sammanfattning

In this paper propagation of transient electromagnetic waves in a reciprocal
bi-isotropic medium is presented. The constitutive relations are convolution
integrals with two susceptibility kernels that model the medium. The propagation
problem is solved by the introduction of a wave-splitting technique.
This wave-splitting is used to solve the propagation problem using either an
imbedding approach or a Green function technique. In particular, the scattering
problem of an electromagnetic wave that impinges normally on a slab
of finite or infinite extent is solved. The slab is assumed to be inhomogeneous
with respect to depth. The scattering problem consists of finding the reflected
and the transmitted fields and the generic quantities are the reflection and the
transmission kernels of the medium. Explicit expressions for the rotation and
the attenuation of the wave front is presented for the inhomogeneous slab. In
the special case of a homogeneous infinite slab it is proved that the reflection
kernel satisfies a non-linear Volterra equation of the second kind, very suitable
for numerical calculations. It is also proved that no cross polarization contribution
appears for the homogeneous slab. Several numerical computations
illustrate the analysis.

Disputation

Nyckelord

  • Technology and Engineering

Övriga

Published
TEAT-7015
  • Electromagnetic theory

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen