Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Reformed Methanol Gas as Homogeneous Charge Compression Ignition Engine Fuel

Författare

  • Ola Stenlåås
  • Magnus Christensen
  • Rolf Egnell
  • Per Tunestål
  • Fabian Mauss
  • Bengt Johansson

Summary, in English

Hydrogen has been proposed as a possible fuel for automotive applications. Methanol is one of the most efficient ways to store and handle hydrogen. By catalytic reformation it is possible to convert methanol into hydrogen and carbon monoxide. This paper reports an experimental investigation of Reformed Methanol Gas as Homogeneous Charge Compression Ignition (HCCI) engine fuel. The aim of the experimental study is to investigate the possibility to run an HCCI engine on a mixture of hydrogen and carbon monoxide, to study the combustion phasing, the efficiency and the formation of emissions.



Reformed Methanol Gas (RMG) was found to be a possible fuel for an HCCI engine. The heat release rate was lower than with pure hydrogen but still high compared to other fuels. The interval of possible start of combustion crank angles was found to be narrow but wider than for hydrogen. The high rate of heat release limited the operating range to lean (glmg3) cases as with hydrogen. On the other hand, operation on extremely lean mixtures (glme6) was possible. The operating range was investigated using intake air temperature for control and also this control interval was found to be narrow but more extensive than for pure hydrogen, especially when richer cases were run. The maximal load in HCCI mode was a net Indicated Mean Effective Pressure (IMEPn) of 3.5 bar for RMG. This is the same maximum IMEPn as for hydrogen. It is about half the load possible in Spark Ignition (SI) mode and about half the maximal load in HCCI mode with other fuels. For the loads where HCCI operation was possible, indicated thermal efficiency for HCCI was superior to that of SI operation. The indicated overall efficiency of the engine-reformer system is as high for SI as for HCCI operation when RMG is used as fuel. NOx emissions were, as expected, found to decrease when the equivalence ratio was lowered. High levels of carbon monoxide were found in the exhaust. Emissions of hydrocarbons were detected, probably originating from evaporated and partially oxidized lubrication oil.

Publiceringsår

2004

Språk

Engelska

Sidor

127-140

Publikation/Tidskrift/Serie

SAE Special Publications

Volym

2004

Issue

1896

Dokumenttyp

Konferensbidrag

Förlag

Society of Automotive Engineers

Ämne

  • Atom and Molecular Physics and Optics
  • Other Mechanical Engineering

Nyckelord

  • HCCI
  • Reformed Methanol
  • Engine
  • Combustion

Status

Published