Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Constitutive dependence in finite-element modelling of crack closure during fatigue

Författare

  • Henrik Andersson
  • Christer Persson
  • Tomas Hansson
  • Solveig Melin
  • Niklas Järvstråt

Summary, in English

The influence of choice of constitutive relation on the prediction of crack-opening stress for fatigue cracks using the finite-element method is investigated and compared with experimental results. Two different experimentally obtained stress–strain relations for IN718 at 550 °C were used for fitting material parameters to the linear kinematic and the Bodner–Partom viscoplastic constitutive models. In addition, one reference material description and one Bodner–Partom with parameters fitted to both types of experiment was used, i.e., in total six constitutive descriptions. Experimental values for crack-opening stress were found by the potential drop method for the two load cases analyzed. Two different load cases, load control and displacement control, have been examined. It turns out that the correlation between experimental and analytical crack-opening stress vary significantly with material description, opening criteria in the simulation and load case. The investigation shows that care must be taken when choosing material description and opening criteria for crack propagation simulations.

Publiceringsår

2004

Språk

Engelska

Sidor

75-87

Publikation/Tidskrift/Serie

Fatigue & Fracture of Engineering Materials & Structures

Volym

27

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Materials Engineering
  • Applied Mechanics

Nyckelord

  • fatigue
  • finite-element modelling
  • Bodner-Partom
  • crack closure
  • material model
  • IN718

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1460-2695