Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Reactivity of LiBH4: In situ synchrotron radiation powder X-ray diffraction study

Författare

  • Lene Mosegaard
  • Bitten Moller
  • Jens-Erik Jorgensen
  • Yaroslav Filinchuk
  • Yngve Cerenius
  • Jonathan C Hanson
  • Elaine Dimasi
  • Flemming Besenbacher
  • Torben R Jensen

Summary, in English

Lithium tetrahydridoboranate (LiBH4) may be a potentially interesting material for hydrogen storage, but in order to absorb and desorb hydrogen routinely and reversibly, the kinetics and thermodynamics need to be improved significantly. A priori, this material has one of the highest theoretical gravimetric hydrogen contents, 18.5 wt%, but unfortunately for practical applications, hydrogen release occurs at too high temperature in a non-reversible way. By means of in situ synchrotron radiation powder X-ray diffraction (SR-PXD), the interaction between LiBH4 and different additives-SiO2, TiCl3, LiCl, and Au - is investigated. It is found that silicon dioxide reacts with molten LiBH4 and forms Li2SiO3 or Li4SiO4 at relatively low amounts of SiO2, e.g., with 5.0 and 9.9 mol % SiO2 in LiBH4, Whereas, for higher amounts of SiO2 (e.g., 25.5 mol %), only the Li2SiO3 phase is observed. Furthermore, we demonstrate that a solid-state reaction occurs between LiBH4 and TiCl3 to form LiCl at room temperature. At elevated temperatures, more LiCl is formed simultaneously with a decrease in the diffracted intensity from TiCl3. Lithium chloride shows some solubility in solid LiBH4 at T > 100 degrees C. This is the first report of substituents that accommodate the structure of LiBH4 by a solid/solid dissolution reaction. Gold is found to react with molten LiBH4 forming a Li-Au alloy with CuAu3-type structure. These studies demonstrate that molten LiBH4 has a high reactivity, and finding a catalyst for this H-rich system may be a challenge.

Publiceringsår

2008

Språk

Engelska

Sidor

1299-1303

Publikation/Tidskrift/Serie

Journal of Physical Chemistry C

Volym

112

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

The American Chemical Society (ACS)

Ämne

  • Physical Sciences
  • Natural Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1932-7447