Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy

Författare

Summary, in English

InGaAs nanowires grown by Metalorganic Vapor Phase Epitaxy (MOVPE) are promising candidates in future device technologies. The control of the chemical composition of InGaAs nanowires is not trivial due to the In atom diffusion from the substrate, which causes significant variations in the chemical composition along the nanowire. In this work, we report on the growth of InGaAs nanowires on (111)B InAs substrates followed by the characterization using high-resolution x-ray diffraction (HRXRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) as well as scanning transmission electron microscopy (STEM) in combination with energy dispersive X-ray spectroscopy (EDS). By detailed analyses of the HRXRD spectra and their variations with nanowires grown for different times, fundamental insight was gained into tapering formation and chemical composition gradient of the nanowires. The measurements show that acceptable uniformity of In and Ga concentrations along InGaAs nanowires can be achieved, and the maximum achievable nanowire length without tapering depends on the nanowire density. Finally, by carefully choosing the growth conditions, the morphology of the InGaAs nanowire can be further optimized. (C) 2 013 Elsevier B.V. All rights reserved

Publiceringsår

2013

Språk

Engelska

Sidor

158-165

Publikation/Tidskrift/Serie

Journal of Crystal Growth

Volym

383

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Materials Engineering

Nyckelord

  • Chemical concentration
  • Diffusion
  • HRXRD
  • MOVPE
  • InGaAs nanowires

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-0248