Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Nanoparticles for long-term stable, more selective MISiCFET gas sensors

Författare

  • A Salomonsson
  • S Roy
  • C Aulin
  • J Cerda
  • PO Kall
  • L Ojamae
  • M Strand
  • Mehri Sanati
  • AL Spetz

Summary, in English

Synthesis of metal-oxide nanoparticles and utilization of these particles as gate materials for field-effect sensor devices is reported. Improved selectivity to specific gases is expected by modulating the size of the oxide nanoparticles or impregnating them with catalytic metals. Another objective is to improve the long-term thermal stability of the sensors, since the metal loaded nanoparticles may prevent thermally induced restructuring of the gate layer, which is often a problematic issue for the catalytic metal layers. Because of its reasonably high electrical conductivity, which is especially important for the capacitive gas sensors, ruthenium dioxide has been identified to be one of the potential candidates as gate material for the field-effect sensor devices. Interestingly, this material has been found to change its resistivity in different gaseous ambients. When used as a gate material, sensitivity to reducing gases has been observed for the RuO2/SiO2/4H-SiC capacitors. Changes in the resistivity of the films due to various gas exposures have also been recorded. Morphological studies of nanoparticles (SiO2 and Al2O3), loaded or impregnated with catalytic metals (e.g. Pt), have been performed.

Publiceringsår

2005

Språk

Engelska

Sidor

831-838

Publikation/Tidskrift/Serie

Sensors and Actuators B: Chemical

Volym

107

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Production Engineering, Human Work Science and Ergonomics

Nyckelord

  • Sensors
  • Catalytic material
  • MISiCFET
  • Rutherium dioxide

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0925-4005