Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Fish-mediated trait compensation in zooplankton

Författare

Summary, in English

1. Environmental factors fluctuate spatially and temporally, and organisms that can alter phenotype in response to these changes may increase their fitness. Zooplankton are known to be able to induce body pigmentation in response to ultraviolet radiation (UVR) and to reduce the pigmentation when exposed to fish predators. Hence, reduced pigmentation because of the presence of fish could potentially lead to UVR damage, which calls for alternative protective mechanisms. 2. We exposed zooplankton to fish cues and UVR stress to assess whether body pigmentation and cellular antioxidants are flexible predation and UVR defences. 3. Zooplankton exposed to fish predator cues (no direct predation) reduced their pigmentation by c. 30% in 20 days. However, they were able to rapidly counteract negative UVR effects by increasing the activity of antioxidant defences such as glutathione S-transferase (GST). When exposed to UVR, the GST activity increased by c. 100% in zooplankton that had previously reduced their pigmentation because of fish cues. Transparency in the zooplankton did not lead to considerably higher UVR damage, here measured as inhibition of cholinesterase (ChE). 4. We conclude that zooplankton pigmentation and antioxidant enzymes are flexible UVR defence systems, which can be induced when needed. Zooplankton may employ antioxidant defences when pigmentation is reduced to counteract predation risk and thereby rapidly respond to detrimental effects of UVR exposure, that is, they can compensate one trait with another.

Publiceringsår

2012

Språk

Engelska

Sidor

608-615

Publikation/Tidskrift/Serie

Functional Ecology

Volym

26

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Ecology

Nyckelord

  • carotenoids
  • cholinesterase
  • enzymes
  • glutathione S-transferase
  • oxidative stress
  • phenotypic plasticity
  • trait compensation
  • ultraviolet
  • radiation
  • zooplankton

Status

Published

Forskningsgrupp

  • Aquatic Ecology

ISBN/ISSN/Övrigt

  • ISSN: 1365-2435