Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Screening of nucleation conditions using levitated drops for protein crystallization

Publiceringsår: 2003
Språk: Engelska
Sidor: 1733-1740
Publikation/Tidskrift/Serie: Analytical Chemistry
Volym: 75
Nummer: 7
Dokumenttyp: Artikel i tidskrift
Förlag: The American Chemical Society


The growth of suitable protein crystals is an essential step in the structure determination of a protein by X-ray crystallography. At present, crystals are mostly grown using trial-and-error procedures, and protocols that rapidly screen for the crystal nucleation step are rare. Presented here is an approach to minimize the consumption of precious protein material while searching for the nucleation conditions. Acoustically levitated drops of known protein concentration (0.25-1.5-L volumes) are injected with crystallizing agents using piezoelectric flow-through dispensers (ejecting 50-100-pL droplets at 1-9000 droplets/s). A restricted number of crystallizing agents representing three classes are used: poly(ethylene glycol), salts, and the viscous alcohol 2-methyl 2,4-pentanediol. From a digitized picture of the levitated drop volume, calculations are performed giving the concentrations of all components in the drop at any time during a "precipitation experiment". Supersaturation is the prerequisite for crystal nucleation, and protein precipitation indicates high supersaturation. A light source illuminates the levitated drop, and protein precipitation is monitored using right-angle light scattering. On the basis of these intensity measurements and the volume determination, precipitation diagrams for each crystallizing agent are constructed that give the protein/crystallizing agent concentration boundaries between the minimum and the maximum detectable protein precipitation. Guided by the concentration values obtained from such plots, when approaching the supersaturation region, separate crystallization drops are mixed and allowed to equilibrate under paraffin oil. At conditions in which microcrystals can be observed, the nucleation tendency of the macromolecule is confirmed. Optimization of crystallization conditions can then follow. Proteins tested include alcohol dehydrogenase and D-serine dehydratase. Alcohol dehydrogenase, known to crystallize easily, was used to evaluate whether the ultrasonic field inhibits nucleation. Details are given for the screening procedure of D-serine dehydratase, an enzyme earlier found to be difficult to crystallize reproducibly. The time and material-saving qualities of this method are emphasized, since a range of conditions can quickly be screened using small amounts of protein to roughly determine solubility characteristics of a protein before crystallization trials are initiated.


  • Analytical Chemistry


  • ISSN: 1520-6882

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at]

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen