Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays

Författare:
Publiceringsår: 2007
Språk: Engelska
Sidor: 2984-2991
Publikation/Tidskrift/Serie: Analytical Chemistry
Volym: 79
Nummer: 7
Dokumenttyp: Artikel
Förlag: American Chemical Society

Sammanfattning

Techniques for manipulating, separating, and trapping particles and cells are highly desired in today's bioanalytical and biomedical field. The microfluidic chip-based acoustic noncontact trapping method earlier developed within the group now provides a flexible platform for performing cell- and particle-based assays in continuous flow microsystems. An acoustic standing wave is generated in etched glass channels (600 x 61 mu m(2)) by miniature ultrasonic transducers (550 x 550 x 200 mu m(3)). Particles or cells passing the transducer will be retained and levitated in the center of the channel without any contact with the channel walls. The maximum trapping force was calculated to be 430 +/- 135 pN by measuring the drag force exerted on a single particle levitated in the standing wave. The temperature increase in the channel was characterized by fluorescence measurements using rhodamine B, and levels of moderate temperature increase were noted. Neural stem cells were acoustically trapped and shown to be viable after 15 min. Further evidence of the mild cell handling conditions was demonstrated as yeast cells were successfully cultured for 6 h in the acoustic trap while being perfused by the cell medium at a flowrate of 1 mu L/min. The acoustic microchip method facilitates trapping of single cells as well as larger cell clusters. The noncontact mode of cell handling is especially important when studies on nonadherent cells are performed, e.g., stem cells, yeast cells, or blood cells, as mechanical stress and surface interaction are minimized. The demonstrated acoustic trapping of cells and particles enables cell- or particle-based bioassays to be performed in a continuous flow format.

Disputation

Nyckelord

  • Biology and Life Sciences

Övriga

Published
Yes
  • ISSN: 0003-2700

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen