Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Lamperti Transform and a Series Decomposition of Fractional Brownian Motion

Publiceringsår: 2007
Språk: Engelska
Publikation/Tidskrift/Serie: Preprints in Mathematical Sciences1999-01-01+01:00
Nummer: 2007:34
Dokumenttyp: Artikel i tidskrift
Förlag: Lund University


The Lamperti transformation of a self-similar process is a strictly stationary process.

In particular, the fractional Brownian motion transforms to the second order stationary Gaussian process.

This process is represented as a series of independent processes.

The terms of this series are Ornstein-Uhlenbeck processes if $H<1/2$, and linear combinations of two dependent Ornstein-Uhlenbeck processes whose two dimensional structure is Markovian if $H>1/2$.

From the representation effective approximations of the process are derived.

The corresponding results for the fractional Brownian motion are obtained by applying the inverse Lamperti transformation.

Implications for simulating the fractional Brownian motion are discussed.


  • Probability Theory and Statistics
  • spectral density
  • covariance function
  • stationary Gaussian processes
  • long-range dependence


  • ISSN: 1403-9338

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at]

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen