Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Response of zooplankton to nutrient enrichment and fish in shallow lakes: a pan-European mesocosm experiment

Författare

  • K Vakkilainen
  • T Kairesalo
  • J Hietala
  • D M Balayla
  • E Becares
  • W J Van de Bund
  • E Van Donk
  • M Fernandez-Alaez
  • Mikael Gyllström
  • Lars-Anders Hansson
  • MR Miracle
  • B Moss
  • S Romo
  • J Rueda
  • D Stephen

Summary, in English

1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year-to-year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 mug TP L-1) when grazer biomass was high (>80-90 mug dry mass L-1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30degreesC), than at lower temperatures (17-23degreesC) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.

Publiceringsår

2004

Språk

Engelska

Sidor

1619-1632

Publikation/Tidskrift/Serie

Freshwater Biology

Volym

49

Issue

12

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Ecology

Status

Published

Forskningsgrupp

  • Aquatic Ecology

ISBN/ISSN/Övrigt

  • ISSN: 0046-5070