Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Experimental and theoretical comparison of spatially resolved laser-induced incandescence (LII) signals of soot in backward and right-angle configuration

Författare

Summary, in English

In-situ measurements of soot volume fraction in the exhausts of jet engines can be carried out using the laser-induced incandescence (LII) technique in backward configuration, in which the signal is detected in the opposite direction of the laser beam propagation. In order to improve backward LII for quantitative measurements, we have in this work made a detailed experimental and theoretical investigation in which backward LII has been compared with the more commonly used right-angle LII technique. Both configurations were used in simultaneous visualization experiments at various pulse energies and gate timings in a stabilized methane diffusion flame. The spatial near-Gaussian laser energy distribution was monitored on-line as well as the time-resolved LII signal. A heat and mass transfer model for soot particles exposed to laser radiation was used to theoretically predict both the temporal and spatial LII signals. Comparison between experimental and theoretical LII signals indicates similar general behaviour, for example the broadening of the spatial LII distribution and the hole-burning effect at centre of the beam due to sublimation for increasing laser pulse energies. However, our comparison also indicates that the current heat and mass transfer model overpredicts signal intensities at higher fluence, and possible reasons for this behaviour are discussed.

Publiceringsår

2006

Språk

Engelska

Sidor

423-433

Publikation/Tidskrift/Serie

Applied Physics B

Volym

83

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0946-2171