Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size

Författare

Summary, in English

“The laser-induced incandescence (LII) signal is proportional to soot volume fraction” is an often used statement in scientific papers, and it has – within experimental uncertainties – been validated in comparisons with other diagnostic techniques in several investigations. In 1984 it was shown theoretically in a paper by Melton that there is a deviation from this

statement in that the presence of larger particles leads to some overestimation of soot volume fractions. In the present paper we present a detailed theoretical investigation of how the soot particle size influences the relationship between LII signal and soot volume fraction for different experimental conditions. Several

parameters have been varied; detection wavelength, time and delay of detection gate, ambient gas temperature and pressure, laser fluence, level of aggregation and spatial profile. Based on these results we are able, firstly, to understand how experimental conditions should be chosen in order to minimize the errors introduced when assuming a linear dependence between the signal and volume fraction and secondly, to obtain knowledge on how to use this information to obtain more accurate soot volume fraction data if the particle size is known.

Publiceringsår

2008

Språk

Engelska

Sidor

109-125

Publikation/Tidskrift/Serie

Applied Physics B: Lasers and Optics

Volym

90

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Atom and Molecular Physics and Optics

Nyckelord

  • Laser-induced incandescence Soot diagnostics Heat and mass transfer model

Status

Published