Meny

Du är här

Trapping of microparticles in the near field of an ultrasonic transducer

Författare:
Publiceringsår: 2005
Språk: Engelska
Sidor: 293-303
Publikation/Tidskrift/Serie: Ultrasonics
Volym: 43
Nummer: 5
Dokumenttyp: Artikel
Förlag: Elsevier

Sammanfattning

We are investigating means of handling microparticles in microfluidic systems, in particular localized acoustic trapping of microparticles in a flow-through device. Standing ultrasonic waves were generated across a microfluidic channel by ultrasonic microtransducers integrated in one of the channel walls. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined at the lateral position of the transducer. The spatial distribution of trapped particles was evaluated and compared with calculated acoustic intensity distributions. The particle trapping was found to be strongly affected by near field pressure variations due to diffraction effects associated with the finite sized transducer element. Since laterally confining radiation forces are proportional to gradients in the acoustic energy density, these near field pressure variations may be used to get strong trapping forces, thus increasing the lateral trapping efficiency of the device. In the experiments, particles were successfully trapped in linear fluid flow rates up to 1 mm/s. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (μTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence.

Disputation

Nyckelord

  • Technology and Engineering
  • Chemistry
  • Microfluidic
  • PZT
  • Particles
  • Ultrasound
  • Piezoelectric
  • Near field
  • Trap

Övriga

Published
Yes
  • ISSN: 0041-624X

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen