Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Size dependence of the Poisson's ratio in single-crystal fcc copper nanobeams

Författare

Summary, in English

Elastic simulations of single-crystal copper nanobeams, of different cross section sizes and with crystallographic orientations [100] and [110] along their length directions, have been performed applying tensile mechanical loading. The molecular dynamics code LAMMPS was employed for the simulations. The Poisson's ratio, which is one of the fundamental measures of the elastic deformation behaviour of materials, has been determined. In this paper we present numerical evidence that the Poisson's ratio of nanobeams loaded by finite strains varies with both size and crystallographic orientation. In particular, we provide numerical evidence for that, of the two Poisson's ratio that naturally can be defined for nanobeams loaded in the [110]-direction, one is negative whereas the other one remains almost constant, irrespective of applied strain. We also show that for nanobeams loaded in the [100]-direction the values of Poisson's ratio initially decrease, reaches a minimum and thereafter increase with applied strain. For the smallest [100] cross sections the Poisson's ratios are initially negative, but turn positive at larger strains.

Avdelning/ar

Publiceringsår

2016

Språk

Engelska

Sidor

322-327

Publikation/Tidskrift/Serie

Computational Materials Science

Volym

111

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Applied Mechanics

Nyckelord

  • single-crystal copper
  • size effects
  • nanobeam
  • molecular dynamics
  • Poisson's ratio

Status

Published

Projekt

  • Modelling mechanical properties at nanoscale by molecular dynamics

Forskningsgrupp

  • Mechanics

ISBN/ISSN/Övrigt

  • ISSN: 0927-0256
  • 10.1016/j.commatsci.2015.09.026