Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction

Författare

Summary, in English

Waste incineration bottom ash fine fraction contains a significant amount of aluminium, but previous works have shown that current recovery options based on standard on-step Eddy Current Separation (ECS) have limited efficiency. In this paper, we evaluated the improvement in the efficiency of ECS by using an additional step of crushing and sieving. The efficiency of metallic Al recovery was quantified by measuring hydrogen gas production. The ash samples were also tested for total aluminium content with X-ray fluorescence spectroscopy (XRF). As an alternative to material recovery, we also investigated the possibility to convert residual metallic Al into useful energy, promoting H-2 gas production by reacting metallic Al with water at high pH. The results show that the total aluminium concentration in the <4 mm bottom ash fraction is on average 8% of the weight of the dry ash, with less than 15% of it being present in the metallic form. Of this latter, only 21% can be potentially recovered with ECS combined with crushing and sieving stages and subsequently recycled. For hydrogen production, using 10 M NaOH at 1 L/S ratio results in the release of 6-111 of H-2 gas for each kilogram of fine dry ash, equivalent to an energy potential of 118 kJ. (C) 2013 Elsevier Ltd. All rights reserved.

Publiceringsår

2013

Språk

Engelska

Sidor

1174-1181

Publikation/Tidskrift/Serie

Waste Management: international journal of integrated waste management, science and technology

Volym

33

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Earth and Related Environmental Sciences
  • Water Engineering

Nyckelord

  • Bottom ash
  • Aluminium recovery
  • Hydrogen production

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1879-2456