Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Optimization Of The Blade Profile And Cooling Structure In A Gas Turbine Stage Considering Both The Aerodynamics And Heat Transfer

Författare

Summary, in English

The need to design high performance of a cooled gas turbine is considered with emphasis made on coupled aerodynamic and heat transfer optimization of the vane, blade, and single stage cooled gas turbine by using a multiobjective optimization method. The aerodynamic profile is designed to have three sections and the cooling structure to consist of a serpentine passage, with a tail transverse channel and trailing edge slots. The optimization platform is built up in an in-house code using a cooling structure parametric method based on MATLAB, as well as automatic grid generation methods, a blade profile parametric program in FORTRAN, the soft ware ISIGHT and ANSYS-CFX. The optimization platform evaluates the aerodynamic effects through the aerodynamic efficiency and presents the cooling effect by the high-temperature coefficient. The pressure drop is described by a pressure drop function. The multiobjective optimization method is accomplished by optimizing the inlet flow angle, installation angle, and the post-corner angle of the vane and blade profiles, while the position of partition is the optimized variable of the cooling structure. The results show that there exists an optimum case in aerodynamic efficiency, high-temperature coefficient, and pressure drop in a Pareto-optimal front.

Avdelning/ar

Publiceringsår

2015

Språk

Engelska

Sidor

599-629

Publikation/Tidskrift/Serie

Heat Transfer Research

Volym

46

Issue

7

Dokumenttyp

Artikel i tidskrift

Förlag

Begell House

Ämne

  • Energy Engineering

Nyckelord

  • heat transfer
  • aerodynamic
  • gas turbine
  • multiobjective optimization
  • Pareto-optimal front

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1064-2285