Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Approximation algorithms for Hamming clustering problems

Författare

Summary, in English

We study Hamming versions of two classical clustering problems. The Hamming radius p-clustering problem (HRC) for a set S of k binary strings, each of length n, is to find p binary strings of length n that minimize the maximum Hamming distance between a string in S and the closest of the p strings; this minimum value is termed the p-radius of S and is denoted by varrho. The related Hamming diameter p-clustering problem (HDC) is to split S into p groups so that the maximum of the Hamming group diameters is minimized; this latter value is called the p-diameter of S.



We provide an integer programming formulation of HRC which yields exact solutions in polynomial time whenever k is constant. We also observe that HDC admits straightforward polynomial-time solutions when k=O(logn) and p=O(1), or when p=2. Next, by reduction from the corresponding geometric p-clustering problems in the plane under the L1 metric, we show that neither HRC nor HDC can be approximated within any constant factor smaller than two unless P=NP. We also prove that for any var epsilon>0 it is NP-hard to split S into at most pk1/7−var epsilon clusters whose Hamming diameter does not exceed the p-diameter, and that solving HDC exactly is an NP-complete problem already for p=3. Furthermore, we note that by adapting Gonzalez' farthest-point clustering algorithm [T. Gonzalez, Theoret. Comput. Sci. 38 (1985) 293–306], HRC and HDC can be approximated within a factor of two in time O(pkn). Next, we describe a 2O(pvarrho/var epsilon)kO(p/var epsilon)n2-time (1+var epsilon)-approximation algorithm for HRC. In particular, it runs in polynomial time when p=O(1) and varrho=O(log(k+n)). Finally, we show how to find in Image time a set L of O(plogk) strings of length n such that for each string in S there is at least one string in L within distance (1+var epsilon)varrho, for any constant 0<var epsilon<1.

Avdelning/ar

  • Computer Science

Publiceringsår

2004

Språk

Engelska

Sidor

289-301

Publikation/Tidskrift/Serie

Journal of Discrete Algorithms

Volym

2

Issue

2 spec. iss.

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Computer Science

Nyckelord

  • Theorem proving
  • Polynomials
  • Integer programming
  • Algorithms
  • Approximation theory
  • Mathematical models

Status

Published

Projekt

  • VR 2002-4049

ISBN/ISSN/Övrigt

  • ISSN: 1570-8667