Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Invariance properties of the negative binomial Levy process and stochastic self-similarity.

Författare:
Publiceringsår: 2007
Språk: Engelska
Sidor: 1457-1468
Publikation/Tidskrift/Serie: International Mathematical Forum
Volym: 2
Nummer: 30
Dokumenttyp: Artikel i tidskrift
Förlag: Hikari Ltd

Sammanfattning

We study the concept of self-similarity with respect to stochastic

time change. The negative binomial process (NBP) is an example of a

family of random time transformations with respect to which stochastic

self-similarity holds for certain stochastic processes. These processes

include gamma process, geometric stable processes, Laplace motion, and

fractional Laplace motion. We derive invariance properties of the NBP

with respect to random time deformations in connection with stochastic

self-similarity. In particular, we obtain more general classes of processes

that exhibit stochastic self-similarity properties. As an application, our

results lead to approximations of the gamma process via the NBP and

simulation algorithms for both processes.

Nyckelord

  • Probability Theory and Statistics
  • Compound Poisson process
  • Cox process
  • Discrete L´evy process
  • Doubly stochastic Poisson process
  • Fractional Laplace motion
  • Gamma- Poisson process
  • Gamma process
  • Geometric sum
  • Geometric distribution
  • Infinite divisibility
  • Point process
  • Random stability
  • Subordination
  • Self similarity
  • Simulation

Övriga

Published
  • ISSN: 1312-7594

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu.se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen