Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

An Experimental Study of Heat Transfer on an Outlet Guide Vane

Författare

Summary, in English

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and -25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.

Avdelning/ar

Publiceringsår

2014

Språk

Engelska

Sidor

001-14

Publikation/Tidskrift/Serie

Proceedings of the ASME Turbo Expo: Turbine Technical Conference And Exposition, 2014, Vol 5B

Dokumenttyp

Konferensbidrag

Förlag

Amer. Soc. Mechanical Engineers

Ämne

  • Energy Engineering

Conference name

ASME Turbo Expo: Turbine Technical Conference and Exposition

Conference date

2014-06-16 - 2014-06-20

Status

Published