Meny

Du är här

Skewed Laplace distributions II: divisibility properties and extensions to stochastic processes.

Författare:
Publiceringsår: 2008
Språk: Engelska
Publikation/Tidskrift/Serie: The Mathematical Scientist
Volym: 33
Nummer: 1
Dokumenttyp: Artikel
Förlag: Applied Probability Trust

Sammanfattning

This paper is a continuation of cite{KP06}, where we discussed the origins and inter-relations of major types of skew Laplace distributions. Here, we review the properties of classical and geometric infinite divisibility as well as self-decomposability, which are crucial in extending univariate Laplace models to stochastic processes. General schemes based on these properties lead to several new non-Gaussian stationary autoregressive processes and continuous-time L'evy processes having potential use in stochastic modeling.

Disputation

Nyckelord

  • Mathematics and Statistics
  • Mittag-Leffler distribution
  • non-Gaussian time series model
  • Linnik distribution
  • L'evy process
  • infinite divisibility
  • geometric summation
  • geometric infinite divisibility
  • class L
  • bilateral exponential law
  • autoregressive process
  • Asymmetric Laplace law
  • self decomposable law
  • variance-gamma process
  • skew double-exponential model

Övriga

Inpress
Yes
  • ISSN: 0312-3685

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen