Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Mathematical modelling of fire development in cable installations

Författare

Summary, in English

In 1996 DG XII of the European Commission (Research and Development) approved a 3 year project on the fire performance of electrical cables. Within this FIPEC project, a major part of the work involved correlation and mathematical modelling of flame spread and heat release rate in cable installations. The FIPEC project has developed different levels of testing ranging from a small-scale, cone calorimeter test procedures developed for cables and materials, a full-scale-test procedure based on the IEC 60332-3, but utilizing HRR and SPR measurements, and a real scale test conducted on model cable installations. Links through statistical correlations and mathematical fire modelling between these levels were investigated and the findings are presented in this paper. These links could form the scientific foundations for standards upon which fire performance measurements can be based and for new fire engineering techniques within fire performance based codes. Between each testing level correlation, numerical and mathematical models were performed. All of the models were based on the cone calorimeter test method. The complexity of the models varied from correlation models to advanced physical pyrolysis models which can be used in CFD codes. The results will allow advanced prediction of cable fires in the future. Also a bench mark was established for the prediction of cable performance by means of data obtained from the constituent materials

Publiceringsår

2001

Språk

Engelska

Sidor

169-178

Publikation/Tidskrift/Serie

Fire and Materials

Volym

25

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Building Technologies

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1099-1018