Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Coupled diffusion-deformation multiphase field model for elastoplastic materials applied to the growth of Cu6Sn5

Författare

Summary, in English

A coupled diffusion-deformation, multiphase field model for elastoplastic materials is presented. The equations governing the evolution of the phase fields and the molar concentration field are derived in a thermodynamically consistent way using microforce balance laws. As an example of its capabilities, the model is used to study the growth of the intermetallic compound (IMC) Cu6Sn5 during room-temperature aging. This IMC is of great importance in, e.g., soldering of electronic components. The model accounts for grain boundary diffusion between IMC grains and plastic deformation of the microstructure. A plasticity model with hardening, based on an evolving dislocation density, is used for the Cu and Sn phases. Results from the numerical simulations suggest that the thickness of the IMC layer increases linearly with time and that the morphology of the IMC gradually changes from scallop-like to planar, consistent with previous experimental findings. The model predicts that plastic deformation occurs in both the Cu and the Sn layers. Furthermore, the mean value of the biaxial stress in the Sn layer is found to saturate at a level of −8 MPa to −10 MPa during aging. This is in good agreement with experimental data.

Publiceringsår

2016

Språk

Engelska

Sidor

98-109

Publikation/Tidskrift/Serie

Acta Materialia

Volym

108

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Mechanical Engineering
  • Materials Engineering

Nyckelord

  • Finite element method
  • Phase field model
  • Cu6Sn5
  • Intermetallic compounds

Status

Published

Projekt

  • Tin whiskers: modeling and experiments

ISBN/ISSN/Övrigt

  • ISSN: 1873-2453