Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Direct High Affinity Interaction between Aβ42 and GSK3α Stimulates Hyperphosphorylation of Tau. A New Molecular Link in Alzheimer's Disease?

Författare

  • Christopher Dunning
  • Gavin McGauran
  • Katarina Willén
  • Gunnar Gouras
  • David J O'Connell
  • Sara Linse

Summary, in English

Amyloid β peptide (Aβ42) assemblies are considered central to the development of Alzheimer's disease, but the mechanism of this toxicity remains unresolved. We screened protein microarrays with on-pathway oligomeric Aβ42 to identify candidate proteins interacting with toxic Aβ42 species. Samples prepared from Alexa546-Aβ42 and Aβ42 monomers at 1:5 molar ratio were incubated with the array during a time window of the amyloid fibril formation reaction during which the maximum number of transient oligomers exist in the reaction flux. A specific interaction was detected between Aβ42 and glycogen synthase kinase 3α (GSK3α), a kinase previously implicated in the disease pathology. This interaction was validated with anti-GSK3α immunoprecipitation assays in neuronal cell lysates. Confocal microscopy studies further identified colocalization of Aβ42 and GSK3α in neurites of mature primary mouse neurons. A high binding affinity (KD = 1 nM) was measured between Alexa488-Aβ42 and GSK3α in solution using thermophoresis. An even lower apparent KD was estimated between GSK3α and dextran-immobilized Aβ42 in surface plasmon resonance experiments. Parallel experiments with GSK3β also identified colocalization and high affinity binding to this isoform. GSK3α-mediated hyperphosphorylation of the protein tau was found to be stimulated by Aβ42 in in vitro phosphorylation assays and identified a functional relationship between the proteins. We uncover a direct and functional molecular link between Aβ42 and GSK3α, which opens an important avenue toward understanding the mechanism of Aβ42-mediated neuronal toxicity in Alzheimer's disease.

Ämne

  • Neurosciences

Status

Published

Forskningsgrupp

  • Clinical Memory Research
  • Experimental Dementia Research

ISBN/ISSN/Övrigt

  • ISSN: 1948-7193