Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH.

Författare

  • K Kunnus
  • I Josefsson
  • I Rajkovic
  • S Schreck
  • W Quevedo
  • M Beye
  • C Weniger
  • S Grübel
  • M Scholz
  • D Nordlund
  • W Zhang
  • R W Hartsock
  • K J Gaffney
  • W F Schlotter
  • J J Turner
  • B Kennedy
  • Franz Hennies
  • F M F de Groot
  • S Techert
  • M Odelius
  • Ph Wernet
  • A Föhlisch

Summary, in English

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from (1)B2 to (3)B2 is rationalized by the proposed (1)B2 → (1)A1 → (3)B2 mechanism. Ultrafast ligation of the (1)B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the (3)B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via (1)B2 → (1)A1 → (1)A' Fe(CO)4EtOH pathway and the time scale of the (1)A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.

Publiceringsår

2016

Språk

Engelska

Publikation/Tidskrift/Serie

Structural Dynamics

Volym

3

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

American Institute of Physics (AIP)

Ämne

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2329-7778