Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Radiative forcing of climate by ice-age atmospheric dust

Författare

  • T Claquin
  • C Roelandt
  • KE Kohfeld
  • SP Harrison
  • I Tegen
  • IC Prentice
  • Y Balkanski
  • G Bergametti
  • M Hansson
  • N Mahowald
  • Håkan Rodhe
  • M Schulz

Summary, in English

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to effects of low precipitation and low atmospheric (CO2) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The effect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45degrees) mean change in forcing (LGM minus modern) is estimated to be small (-0.9 to +0.2 W m(-2)), especially when compared to nearly -20 W m(-2) due to reflection from the extended ice sheets. Although the net effect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (-2.2 to -3.2 W m(-2)) to the radiative cooling effect of low atmospheric (CO2). Thus, the largest long-term climatic effect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO2) and high atmospheric dust loading may be mutually reinforcing due to multiple positive feedbacks, including the negative radiative forcing effect of dust.

Publiceringsår

2003

Språk

Engelska

Sidor

193-202

Publikation/Tidskrift/Serie

Climate Dynamics

Volym

20

Issue

2-3

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Social Sciences Interdisciplinary

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1432-0894