Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Approximative Matrix Inverse Computations for Very-large MIMO and Applications to Linear Pre-coding Systems

Författare

Summary, in English

In very-large multiple-input multiple-output (MIMO) systems, the BS (base station) is equipped with very large number of antennas as compared to previously considered systems. There are various advantages of increasing the number of antennas, and some schemes would require handling large

matrices for joint processing (pre-coding) at the base station. The dirty paper coding (DPC) is an optimal pre-coding scheme and has a very high complexity. However with increasing number of BS antennas linear pre-coding performance tends

to that of the optimal DPC. Although linear pre-coding is less complex than DPC, there is a need to compute pseudo inverses of large matrices. In this paper we present a low complexity approximation of down-link Zero Forcing linear pre-coding for very-large multi-user MIMO systems. Approximation using a Neumann series expansion is opted for inversion of matrices over traditional exact computations, by making use of special properties of the matrices, thereby reducing the cost of hardware. With this approximation of linear pre-coding,

we can significantly reduce the computational complexity for large enough systems, i.e., where we have enough BS antenna elements. For the investigated case of 8 users, we obtain 90% of the full ZF sum rate, with lower computational complexity, when the number of BS antennas per user is about 20 or more.

Publiceringsår

2013

Språk

Engelska

Sidor

2710-2715

Publikation/Tidskrift/Serie

[Host publication title missing]

Dokumenttyp

Konferensbidrag

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering

Nyckelord

  • linear precoding
  • massive mimo
  • matrix inverse approximation

Conference name

WCNC (wireless communications and networking conference)

Conference date

2013-04-02

Conference place

Shanghai, China

Status

Published

Projekt

  • Distributed antenna systems for efficient wireless systems

Forskningsgrupp

  • Digital ASIC