Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Analysis of sound transmission loss of double-leaf walls in the low-frequency range using the finite element method

Publiceringsår: 2004
Språk: Engelska
Sidor: 239-257
Publikation/Tidskrift/Serie: Building Acoustics
Volym: 11
Nummer: 4
Dokumenttyp: Artikel


The sound transmission loss of double walls in the low-frequency range is studied by means of structure-acoustic finite element analysis. The analysis simulates standard experiments to determine sound transmission loss of walls. The model is a detailed description of the geometry of the system, including both the double wall and the rooms acoustically coupled to the wall. The frequency range studied is in the 1/3-octave bands between 40 Hz and 200 Hz. A parametric study is performed to investigate the influence on the sound transmission loss of various material and geometric properties of the wall and the dimensions of the connecting rooms. The model confirms the importance of primary structural resonance and the size of the connecting rooms in determining the degree of sound transmission loss. The primary structural resonance is mainly determined by the distance between the wall studs and the properties of the sheeting material. Wall length is also important; if the length is such that the wall studs of the last wall cavity are closer together than those of the other wall cavities, the primary structural resonance will be at a higher frequency, thereby decreasing sound transmission loss over a broader frequency range. Similar dimensions of the connecting rooms results in poor transmission loss, mainly at frequencies below 100 Hz (for the wall and room dimensions studied here).



  • Fluid Mechanics and Acoustics



Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen