Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Evolution of “determinants” in sex determination: A novel hypothesis for the origin of environmental contingencies in avian sex bias

Författare

Summary, in English

Abstract in Finnish
Sex-determination is commonly categorized as either "genetic" or "environmental"-a classification that obscures the origin of this dichotomy and the evolution of sex-determining factors. The current focus on static outcomes of sex-determination provides little insight into the dynamic developmental processes by which some mechanisms acquire the role of sex determinants. Systems that combine "genetic" pathways of sex-determination (i.e., sex chromosomes) with "environmental" pathways (e. g., epigenetically induced segregation distortion) provide an opportunity to examine the evolutionary relationships between the two classes of processes and, ultimately, illuminate the evolution of sex-determining systems. Taxa with sex chromosomes typically undergo an evolutionary reduction in size of one of the sex chromosomes due to suppressed recombination, resulting in pronounced dimorphism of the sex chromosomes, and setting the stage for emergence of epigenetic compensatory mechanisms regulating meiotic segregation of heteromorphic sex chromosomes. Here we propose that these dispersed and redundant regulatory mechanisms enable environmental contingency in genetic sex-determination in birds and account for frequently documented context-dependence in avian sex-determination. We examine the evolution of directionality in such sex-determination as a result of exposure of epigenetic regulators of meiosis to natural selection and identify a central role of hormones in integrating female reproductive homeostasis, resource allocation to oocytes, and offspring sex. This approach clarifies the evolutionary relationship between sex-specific molecular genetic mechanisms of sex-determination and non-sex-specific epigenetic regulators of meiosis and demonstrates that both can determine sex. Our perspective show show non-sex-specific mechanisms can acquire sex-determining function and, by establishing the explicit link between physiological integration of oogenesis and sex-determination, opens new avenues to the studies of adaptive sex-bias and sex-specific resource allocation in species with genetic sex-determination

Publiceringsår

2009

Språk

Engelska

Sidor

304-312

Publikation/Tidskrift/Serie

Seminars in Cell & Developmental Biology

Volym

20

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Academic Press

Ämne

  • Biological Sciences

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1084-9521