Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells

Författare

  • Hanna Zirath
  • Anna Frenzel
  • Ganna Oliynyk
  • Lova Segerstrom
  • Ulrica K. Westermark
  • Karin Larsson
  • Matilda Thorén
  • Kjell Hultenby
  • Janne Lehtio
  • Christer Einvik
  • Sven Påhlman
  • Per Kogner
  • Per-Johan Jakobsson
  • Marie Arsenian Henriksson

Summary, in English

The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.

Avdelning/ar

Publiceringsår

2013

Språk

Engelska

Sidor

10258-10263

Publikation/Tidskrift/Serie

Proceedings of the National Academy of Sciences

Volym

110

Issue

25

Dokumenttyp

Artikel i tidskrift

Förlag

National Academy of Sciences

Ämne

  • Cancer and Oncology

Nyckelord

  • mitochondria
  • fatty acid oxidation
  • oxidative phosphorylation
  • small
  • molecule
  • cancer therapy

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1091-6490