Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Investigating spatial differentiation of model parameters in a carbon cycle data assimilation system

Författare

Summary, in English

Better estimates of the net exchange of CO(2) between the atmosphere and the terrestrial biosphere are urgently needed to improve predictions of future CO(2) levels in the atmosphere. The carbon cycle data assimilation system (CCDAS) offers the capability of inversion, while it is at the same time based on a process model that can be used independent of observational data. CCDAS allows the assimilation of atmospheric CO(2) concentrations into the terrestrial biosphere model BETHY, constraining its process parameters via an adjoint approach. Here, we investigate the effect of spatial differentiation of a universal carbon balance parameter of BETHY on posterior net CO(2) fluxes and their uncertainties. The parameter, beta, determines the characteristics of the slowly decomposing soil carbon pool and represents processes that are difficult to model explicitly. Two cases are studied with an assimilation period of 1979 to 2003. In the base case, there is a separate beta for each plant functional type (PFT). In the regionalization case, beta is differentiated not only by PFT, but also according to each of 11 large continental regions as used by the TransCom project. We find that the choice of spatial differentiation has a profound impact not only on the posterior (optimized) fluxes and their uncertainties, but even more so on the spatial covariance of the uncertainties. Differences are most pronounced in tropical regions, where observations are sparse. While regionalization leads to an improved fit to the observations by about 20% compared to the base case, we notice large spatial variations in the posterior net CO(2) flux on a grid cell level. The results illustrate the need for universal process formulations in global-scale atmospheric CO(2) inversion studies, at least as long as the observational network is too sparse to resolve spatial fluctuations at the regional scale.

Publiceringsår

2011

Språk

Engelska

Sidor

2021-2021

Publikation/Tidskrift/Serie

Global Biogeochemical Cycles

Volym

25

Dokumenttyp

Artikel i tidskrift

Förlag

American Geophysical Union (AGU)

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0886-6236