Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

The origin and chemical evolution of carbon in the Galactic thin and thick discs

Författare

Summary, in English

In order to trace the origin and evolution of carbon in the Galactic disc, we have determined carbon abundances in 51 nearby F and G dwarf stars. The sample is divided into two kinematically distinct subsamples with 35 and 16 stars that are representative of the Galactic thin and thick discs, respectively. The analysis is based on spectral synthesis of the forbidden [C I] line at 872.7 nm using spectra of very high resolution (R approximate to 220 000) and high signal-to-noise ratio (S/N greater than or similar to 300) that were obtained with the Coude Echelle Spectrograph (CES) spectrograph by the European Southern Observatory (ESO) 3.6-m telescope at La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for the thin and thick discs are totally merged and flat for subsolar metallicities. The thin disc that extends to higher metallicities than the thick disc shows a shallow decline in [C/Fe] from [Fe/H] approximate to 0 and up to [Fe/H]approximate to+0.4. The [C/O] versus [O/H] trends are well separated between the two discs (due to differences in the oxygen abundances) and bear a great resemblance to the [Fe/O] versus [O/H] trends. Our interpretation of our abundance trends is that the sources that are responsible for the carbon enrichment in the Galactic thin and thick discs have operated on a time-scale very similar to those that are responsible for the Fe and Y enrichment [i.e. SN Ia and asymptotic giant branch (AGB) stars, respectively]. We further note that there exist other observational data in the literature that favour massive stars as the main sources for carbon. In order to match our carbon trends, we believe that the carbon yields from massive stars then must be very dependent on metallicity for the C, Fe and Y trends to be so finely tuned in the two disc populations. Such metallicity-dependent yields are no longer supported by the new stellar models in the recent literature. For the Galaxy, we hence conclude that the carbon enrichment at metallicities typical of the disc is mainly due to low- and intermediate-mass stars, while massive stars are still the main carbon contributor at low metallicities (halo and metal-poor thick disc).

Publiceringsår

2006

Språk

Engelska

Sidor

1181-1193

Publikation/Tidskrift/Serie

Monthly Notices of the Royal Astronomical Society

Volym

367

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Oxford University Press

Ämne

  • Astronomy, Astrophysics and Cosmology

Nyckelord

  • Galaxy: abundances
  • Galaxy: disc
  • Galaxy: evolution
  • Stars: abundances
  • Stars: kinematics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1365-2966