Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Stroke plane angle controls leading edge vortex in a bat-inspired flapper

Författare

Summary, in English

The present interest in micro air vehicles has given the research on bat flight a new impulse. With the use of high speed cameras and improved PIV techniques, the kinematics and aerodynamics of bats have been studied in great detail. A robotic flapper makes it possible to do measurements by systematically changing only one parameter at a time and investigate the parameter space outside the natural flight envelope of bats without risking animal safety. For this study, a robotic flapper (RoBat), inspired by Leptonycteris yerbabuenae was developed and tested over the speed range 1-7 m/s, with variable maximum angles of attacks (AoA(max) = 55 degrees and 15 degrees, respectively) and constant AoA(max). = 55 degrees. These measurements show the presence of a leading edge vortex (LEV) for low speeds and a fully attached flow for high speeds at low AoA(max), which is in line with natural bat flight. A LEV occurs for AoA(max) = 55 degrees throughout the complete flight speed range, and throughout which the LEV circulation coefficient remains rather constant. This implies that bats and micro air vehicles could use LEVs for high load maneuvers also at relatively high flight speeds. However, at high flight speeds the LEV bursts, which causes increased drag, most likely due to a decrease in Strouhal number. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Publiceringsår

2012

Språk

Engelska

Sidor

95-106

Publikation/Tidskrift/Serie

Comptes Rendus. Mecanique

Volym

340

Issue

1-2

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier Masson SAS

Ämne

  • Biological Sciences

Nyckelord

  • Aerodynamics
  • Bat flight
  • Bio-inspired robot
  • Leading edge vortex
  • Micro
  • air vehicle

Status

Published

Forskningsgrupp

  • Animal Flight Lab

ISBN/ISSN/Övrigt

  • ISSN: 1873-7234